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ABSTRACT

Final Report: Fast, Multiscale Algorithms for Wave Propagation in Heterogeneous Environments

Report Title

The objective of this research project was to further develop and integrate numerical methods for the fast and accurate simulation of wave 
propagation problems in the time domain. In support of the long-term goal of creating high-quality software for simulating waves, we seek 
methods which are not only efficient, but which are reliable in that both their stability and the accuracy of the results are essentially 
guaranteed. In support of this goal we have developed: (i.) convenient implementations of optimal local radiation boundary sequences for 
isotropic waves, with implementations in a wide variety of popular discretization schemes for Maxwell's equations; (ii.) extensions of these 
sequences to more complex systems arising in linear elasticity; (iii.) new highly efficient energy-stable discretization schemes on structured 
grids - these include methods based on Hermite interpolation and compact difference schemes constructed using Galerkin techniques; (iv.) 
stable coupling of the efficient structured grid methods with upwind discontinuous Galerkin methods defined on unstructured grids - using 
hybrid grids allows us to treat very complex geometry with efficency comparable to simple domains; (v.) natural upwind discontinuous 
Galerkin discretizations for wave equations in second order form - using the second order form for complex systems results in fewer 
dependent variables.
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Technology Transfer

We have had contact with a few businesses, primarily concerning the implementation of CRBCs in their codes. These include 
Hughes Research Lab, Schlumberger-Doll Research, Shell, and HyPerComp. In particular, we have provided both Hughes and 
HyPerComp with codes to compute optimal parameters, and we have also provided HyPerComp with our research codes which 
implement the method. A longer-term collaboration with HyperComp is being completed, funded by an STTR. Using this 
additional funding we have developed a library of implementations of the CRBCs. In particular, CRBCs can now be used with 
HyPerComp's HDPhysics code, which is extensively utilized for DOD applications. The work with Shell, done in collaboration 
with Prof. Tim Warburton, then on the faculty at Rice University, is focused on the implementation of CRBCs in a new DG-
based code for solving VTI models of seismic waves. We have initiated collaborations with scientists at CASC, Lawrence 
Livermore National Laboratory, and RPI concerning the use of their software package Overture, which contains both the EM 
solver to which the CRBCs are being ported and a grid generation package, Ogen, which we plan to use. In addition we are 
working together on upwind difference methods. Lastly we have initiated collaborations with Lucas Wilcox and Jeremy Kozdon 
at the Naval Postgraduate School centered around software frameworks for adaptive, hybridized solvers.
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1 Introduction

The overall goal of this research is the development and application of efficient algorithms for
solving wave propagation problems in the time domain, with a particular emphasis on problems
in electromagnetism, elasticity, and aeroacoustics. The basic challenges in building such algo-
rithms are rooted in the physical nature of waves themselves; their defining feature is the ability to
propagate large distances relative to the wavelength, carrying information about their sources and
the medium through which they have traveled. Thus typical wave propagation problems exhibit
multiple spatiotemporal scales.

Two crucial components of the highly-efficient, general-purpose wave simulator we envision are

• Reliable, low-cost methods for truncating the computational domain in the near field, thus
avoiding sampling the wave field throughout space;

• Robust, high-resolution volume discretizations providing guaranteed accuracy using minimal
degrees-of-freedom per wavelength.

We have made substantial progress on both of these issues, as we will detail below.

2 Radiation Boundary Conditions and Integral Equations

Our recently-developed theory of complete radiation boundary conditions (CRBCs) solves a long-
standing problem in computational wave propagation; namely how to truncate the domain in the
vicinity of regions of interest in such a way that reflections from the computational boundary can
be efficiently eliminated to any desired accuracy [26, 22, 7, 23, 9]. CRBCs are the provably

optimal method for achieving this in the case of isotropic waves, including the scalar wave
equation and Maxwell’s equations. In particular, as proven in [26], we can guarantee an accuracy, ǫ,

2



over a time interval, T , assuming a separation, δ, of scatterers and sources from the computational
boundary using a CRBC with p auxiliary variables per field with

p ∝ ln

(

1

ǫ

)

· ln

(

cT

δ

)

.

In this project we have developed full implementations of CRBCs for both exterior and waveg-
uide problems in three space dimensions, devised a new formulation better suited to second order
formulations and staggered-grid codes, extended their construction to elastic waves and stratified
media, completed an open-source software library to enable their general use. In addition we have
initiated a study of numerical methods and proper formulations of time-domain integral equations
for scattering problems.

2.1 Implementation of CRBCs with Corners and Edges

As the major component of his doctoral thesis in computational mathematics at SMU, Kurt Stein,
supporated as an RA on this project, completed the development and initial testing of a high-
order, parallelized, 3+ 1 dimensional structured grid solver for first order hyperbolic systems, with
an implementation of CRBCs built in. The implementation uses grid-stabilized finite difference
methods [24, 25] up through 12th order. The mathematical structure of CRBCs involves the
evolution of a hyperbolic system of auxiliary variables defined only on the domain boundary. For
example, along a boundary with normal in the ex coordinate direction this auxiliary system takes
the form:

A0
∂Φ

∂t
+Ay

∂Φ

∂y
+Az

∂Φ

∂z
+ΣΦ = 0,

where Φ is a vector of length m(p+1) for a boundary condition order of p and a hyperbolic system
with m independent variables. Here one set of m variables is the trace of the interior solution.
To close this system boundary conditions are required at face edges. These in turn are provided
by edge variables which satisfy their own auxiliary system. Finally the edge variables require
boundary conditions at corners, which are provided by another set of auxiliary corner variables.
Stein successfully implemented all of these coupled systems. His code achieves the a priori error
estimates of [26]. We illustrate this in Figures 1-2. In the first case, a duct, the auxiliary system is
closed using a physical boundary. In the second, free space, it is closed using the edge and corner
systems.

2.2 Double absorbing boundary implementation of CRBCs

There are some restrictions and inconveniences with the implementation of CRBCs described above.
In particular the formulation requires writing the system in terms of characteristic variables as well
as the effective use of sparse matrix solvers (we have used SuperLU and Umfpack) to treat the
corner and edge systems. The former issue is particularly felt when solving wave equations in
second order form or when using the popular Yee scheme for Maxwell’s equations. To deal with
these issues we have developed an alternative formulation called the double absorbing boundary
(DAB) [23, 9]. In the DAB we solve the auxiliary system for Φ not on the boundary but in a thin
(one element or one stencil width) layer near the boundary. The DAB does not require first order
systems, characteristic variables, or semi-implicit systems at edges and corners. It is slightly more

3
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Figure 1: Maximum observed and predicted errors for solution of the acoustic system with c = 1 in
a duct with square cross-section. Here the solution was produced by a point source at the origin,
and simulated using 8th order differencing in space combined with 4th order Runge-Kutta time
stepping. The duct width is 2 as is the width of the computational domain.

expensive than the original formulation in terms of flops, but requires less memory when edges and
corners are present. It is being used in part of the software implementation of CRBCs discussed
below.

2.3 Extensions to elastic waves and stratified media

The theoretical developments and implementations outlined above assume, in the far field, that the
medium is homogeneous and isotropic and that there is a single wave speed. This is reasonable,
for example, for studying electromagnetic scattering in a vacuum or a dielectric medium, but is
not accurate for many problems arising, for example, in seismic wave studies. As such we have
begun the process of extending the CRBCs to these more complex situations. In particular we have
demonstrated excellent accuracy, even without full parameter optimization, for applications of the
CRBCs to problems in stratified media as well as for some anisotropic problems [21, 7, 22]. This
allows their application, for example, in layered waveguides and for advective acoustics.

We have also initiated their study for applications to elastic waves [8, 35, 34]. Complications
with the elastic wave system include the presence of multiple wave speeds, boundary conditions
involving oblique derivatives, and anisotropic media. In many cases stability is difficult to obtain;
for example no known stable PMLs exist for certain orthotropic media [6]. We have shown that
CRBCs applied to the elastic wave equation, with appropriate parameter choices, are always long-
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Figure 2: Maximum observed and predicted errors for solution of the acoustic system with c = 1
for a solution in free space produced by a point source at the origin, and simulated using 8th
order differencing in space combined with 4th order Runge-Kutta time stepping. The width of the
computational domain is 2.

time stable. This is in contrast with all other high-order radiation conditions which have been
proposed for elastic waves which suffer from long-time error growth. We illustrate this in Figure 3
below.

We are actively working on improving these extansions. The fundamental issue, being studied
by a Ph.D. student, John Lagrone, who has been funded as an RA on this project as well as on
a related STTR, is the computation of optimal parameters and an estimate of convergence with
increasing boundary condition order. This is important not only for elastic wave models but also
for electromagnetic waves in more complex media such as metamaterials. He is also looking into
more general formulations in case they are needed to produce efficient methods for arbitrary wave
systems.

2.4 A CRBC Software Library

In work with HyPerComp, primarily funded by an STTR but also partially supported by this grant,
we have developed an open source software library, rbcpack (www.rbcpack.org), with implemen-
tations of CRBCs for various volume discretizations of Maxwell’s equations. The library generally
involves a preprocessor which computes optimal parameters given ǫ, c, T , and δ, sets up the auxil-
iary system, and provides an interface to the volume solver. Currently two pieces to the library are
complete or nearly complete. The first is the implementation in the popular Yee scheme, developed
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Figure 3: The magnitude of a solution component for a simulation of transversely 1-periodic elastic
waves in 2 + 1 dimensions. The solution displaying long-time instability was obtained using the
traditional implementation of high-order radiation boundary conditions as first proposed by Hig-
don. The long-time stable solutions were produced using our new CRBC formulation but different
parametrizations.

by John Lagrone and utilizing the DAB formulation. This has been completely tested with our
own codes and extensively documented; it will be released once our first external users verify that
it can be linked easily as a library. The second is a boundary-based implementation for arbitrary-
order discontinuous Galerkin discretizations. This has been completely tested for hexahedral grids
and for tetrahedral grids in waveguides. Once the implementation on tetrahedral grids for exterior
problems is complete, which we expect soon, this code will also be released. It can be used in
conjunction with HyPerComp’s HDPhysics platform. The third component is a DAB implementa-
tion for high-order difference approximations to second order formulations with Overture’s cgmx
code as a target application. Currently a two-dimensional version of the code, developed by Fritz
Juhnke, a doctoral student who was supported as an RA on this project and the related STTR, is
being coupled with cgmx; he has successfully tested it using a home-grown version of the 6th order
space-time approximation native to cgmx. Once this coupling is proven to work he will move on to
the three-dimensional implementation. Note that with a DAB formulation extensions from two to
three space dimensions do not require conceptually distinct discrete systems, so it is reasonable to
expect that the extension will be complete in less than a year.
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2.5 Time-domain integral equations for electromagnetic scattering

An alternative to the volume-based methods we work on for simulating electromagnetic waves are
methods based on integral equations. These have the advantage that no volume grid is required, so
that scattering from extremely complex structures (e.g. circuit boards) can be carried out without
the need for a costly grid generation step. This approach has been reinvigorated in the past decade
by the introduction of the so-called Plane Wave Fast Time Domain Algorithm (PWFTD) [16, 36],
which is a time-domain version of Greengard and Rokhlin’s celebrated fast multipole algorithm.
However, the theory behind these equations and the algorithms used to solve them is not well
developed, and a number of seemingly attractive discretization techniques experience unexplained
instabilities. Our first goal is to develop more efficient time-stepping procedures for these unusual
equations. By studying the simple problem of scattering from a sphere we have established a
connection between these time-domain equations and neutral delay differential equations, and have
developed stable explicit methods. In addition we have shown how to alter the integral equation
so that the decay properties of the potentials match those of the physical fields. This is joint work
with Leslie Greengard of the Simons Foundation and the Courant Institute and Charlie Epstein of
the University of Pennsylvania [15]. In Figure 4 we illustrate the remarkably different long time
behavior of the density for different formulations of the same scattering problem. Note that the
solution of the wave equation itself decays exponentially.
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Figure 4: Density µ(t) at mode 0 for scattering of a plane Gaussian pulse from a sphere. On the
left the solution using the standard single layer potential and on the right an appropriately chosen
combined field representation. We use an explicit multistep method of order 6.

In addition we have developed codes for the accurate evaluation of exact solutions for both scalar
wave and electromagnetic scattering from a sphere [18, 19]. These provide benchmark solutions for
any time-domain scattering solver.

2.6 Frequency domain applications

Although the primary focus of our boundary condition development is the time-domain, the CRBCs
can also be used for problems posed in the frequency domain. This development was led by Dr.
Seungil Kim, who for two years was a postdoctoral fellow supported by the grant. The basic
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mathematical formulation and the theory of finite element approximations is worked out in [30, 31].
In particular in [31] we are able to provide a complete mathematical justification for the edge and
corner closure conditions, which as yet are unavailable in the time domain.

Besides the domain truncation itself, CRBCs can be used in place of PMLs to develop sweeping
preconditioners, as first proposed by Engquist and Ying [14]. These address one of the most
important issues for frequency domain compuations, namely the efficient solution of the resulting
algebraic system. In particular it is argued in [14] and elsewhere that sweeping preconditioners can
deliver optimal or near-optimal convergence rates. Kim has shown that CRBCs are an effective
replacement for PML in this context [32]. We note that the CRBCs have also been similarly used
to develop improved parabolized models of jet noise by Towne and Colonius [39, 40].

The criteria for optimizing the CRBC parameters for use in a sweeping preconditioner differ
somewhat from those in the radiation boundary condition problem, and in any case most appli-
cations involve variable coefficients where optimal parameters are unknown. Lagrone has done
some work to use rational Krylov methods (e.g. [33]) to construct locally optimized transmission
conditions. We expect to return to this development in the future.

3 Energy-stable high-resolution volume discretizations

Our belief is that to best exploit advances in computing technology, algorithms based on high-order
space-time discretizations are needed. The reasons for this are two-fold:

i. One aims to solve more difficult problems as measured by the number of wavelengths over which
accuracy must be maintained, and in the treatment of heterogeneous media with disparate
physical properties. More simply put, one wishes to solve problems exhibiting multiple spa-
tiotemporal scales. Due to their minimal dispersion error, high-order methods require orders
of magnitude fewer degrees-of-freedom than traditional lower order schemes when the number
of wavelengths propagated becomes large, and thus they are a natural choice for challenging
problems.

ii. Higher order methods generally involve more localized computation than their lower order coun-
terparts. Thus they exhibit larger computation-to-communication ratios and can therefore
better exploit modern multicore architectures.

The main challenges to realizing the potential of high-order discretizations are to develop methods
which are robustly stable and capable of dealing with complex geometric features. For unstructured
meshes, upwinded discontinuous Galerkin (DG) methods [27] are an excellent choice which we
employ. In particular they are energy-stable and applicable on very general meshes. The downside of
DG methods, or more generally any element-based methods, is artifically stiff derivative operators.
(See, e.g., [42].) The effect of this artificial stiffness is the need to take small times steps, which has
essentially limited most methods to less-than-optimal orders. For polynomial-based discretizations
the only way to avoid this artificial stiffness is to avoid differentiation throughout the polynomial’s
domain of definition, which is best achieved by using structured grids. Thus we are focused on the
use of hybrid structured-unstructured grids, combining upwind DG discretizations with energy-
stable structured grid methods which allow large time steps throughout much of the domain.
We are studying two distinct methods of this type: novel spectral elements based on Hermite
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interpolation [17, 5], and compact difference methods derived from DG ideas [10]. In addition we
have developed new upwind DG methods for wave equations in second order form.

3.1 Hermite Methods

Hermite methods are spectral element methods with unique properties which make them ideal for
efficient implementation on modern multicore architectures, a project underway in collaboration
with Warburton and his group [41]. In comparison with existing techniques, they allow the in-

dependent evolution of thousands of degrees-of-freedom over relatively large time steps,
effectively minimizing communication requirements. In particular, the only time step restriction
is the physical CFL condition independent of order. Thus for methods of order 10 or more the
method is at least 10 times faster than standard DG, and has much better (essentially optimal)
computation-to-communication characteristics.

Hermite methods are energy-stable, but the analysis requires the introduction of an unusual
energy based on high-order derivatives. Precisely, for methods of order 2m+ 1, we prove stability
using the seminorm:

|u|2[m+1] ≡

∫

Ω





∏

j

Dm+1
j u





2

.

This leads to theoretical barriers to proving the stability for coupling with standard DG schemes
on hybrid grids. Nonetheless we do have experimental verifications of the stability of hybridized
Hermite-DG methods [11]. As an example, we have solved the TM Maxwell system on a disk
using the hybrid grid shown in Figure 5, with convergence results for our 9th order implementation
tabulated in Table 1. Of note, besides the fact that convergence at design order is observed, is the
ratio of the time steps - in the extreme case we take 80 steps in each DG cell for every step in a
Hermite cell. Analyzing the stability of the hybrid method is a priority for future research.
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Figure 5: Hybrid grids used for a coupled Hermite-DG solver for Maxwell’s equations. We use the
DG scheme on the mapped triangular elements near the PEC boundary and the Hermite scheme
elsewhere.
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h K CFL ∆tDG Error rate

0.1 447 0.7 1.83(E-03) 1.37(E-08)

0.08 666 0.7 8.56(E-04) 1.42(E-09) 10.1

0.05 1525 0.7 4.09(E-04) 1.68(E-11) 9.4

Table 1: Experimental convergence for the hybrid Hermite-DG Maxwell solver on a disk.

In a series of papers we have examined the basic properties of Hermite methods, including
their performance for nonsmooth solutions [2] and their dispersion/dissipation characteristics [28,
29]. The latter work was a central component of Chang-Young Jang’s doctoral thesis; Dr. Jang
received some RA support from the grant while he was a student. We note that the performance
of the methods for propagating discontinuous solutions is particularly impressive. Interestingly it
improves with increasing order; see Figure 6 below for comparisons with a WENO scheme [37]. We
currently have no theory which fully explains this excellent behavior, but hope to develop one in
the future. We also note that versions with full shock-capturing capabilities are being developed
by our collaborator Appelö and his student Kornelus.

Additional work includes the implementation of a p-refinement strategy [12] and the outlines
of a scheme for h-refinement on octrees [1]. From the theoretical perspective we need to prove
stability for the p-refinements. We also need to develop an effective strategy for choosing between
the two approaches.

Lastly, in collaboration with Daniel Appelö of UNM, we are about to release a basic open-source
library, CHIDES (www.chides.org), to help explain Hermite methods and enable their wider use.

3.2 Galerkin Difference Methods

High-order difference methods provide a simple alternative to Hermite methods as a structured-grid
solver. Recently, methods with the summation-by-parts (SBP) property have been incorporated
into many unsteady aerodynamics simulators due to their guaranteed stability on poor grids [38].
However, a defect of existing high-order SBP methods is severe loss of accuracy at boundaries.
Galerkin difference methods simply use the local piecewise polynomial bases associated with stan-
dard difference schemes in a Galerkin framework. They are closed at boundaries either using
extrapolation to ghost points or by leaving the basis functions associated with ghost points in the
Galerkin basis. In [10] we show that the resulting compact difference schemes are super-

convergent, like their DG counterparts, but have essentially order-independent time

step stability restrictions just as central difference methods possess when there are no bound-
aries. See, for example, Table 2 for the extremely slow growth with p of the eigenvalues of the
differentiation matrices including the boundary closures. Additionally, although the mass matrices
are not diagonal, they are tensor products of banded matrices and thus can be inverted with linear
cost.

As they are based on the Galerkin framework, stable hybridization with standard DG methods
on hybrid grids is automatic.

The Galerkin difference methods have both advantages and disadvantages relative to Hermite
schemes. On standard architectures they are somewhat more efficient in terms of flops, but their
communication patterns are not as ideal. We are just starting to experiment with the schemes, so
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p 3 5 7 9 11 13 15 17

∆x · ρ(Dp,G) 2.02 2.17 3.41 3.18 3.67 3.81 3.57 3.84

∆x · ρ(Dp,X) 2.02 2.17 2.27 2.33 2.39 2.43 2.46 2.49

Table 2: Table of maximum eigenvalues and normalized stability constraint for first derivatives
with the ghost, G, and extrapolation, X, basis closures at various orders. Here p is the method
design order and Dp is the first derivative matrix including boundary conditions.

the development of more serious multidimensional implementations is a subject for future work,
being carried out in collaboration with Jeff Banks of RPI. In particular we are also considering
embedded boundary formulations which would enable the solution of problems in complex geometry
on purely Cartesian grids.

3.3 Upwind DG methods for second order wave equations

In many cases second order formulations of wave equations have advantages over first order for-
mulations. However, in our view the usual DG schemes for wave equations in second order form
such as SIPDG [20] and LDG [13] are less attractive than their first order counterparts due to the
lack of a natural upwinding strategy. In joint work with Appelö [4] we propose a new, and

quite general, formulation of DG methods for wave equations in second order form,
with applications to elastic waves demonstrated in [3]. The essential ideas behind the method are:

i. Introduce a weak approximation, v, to the time derivative of the solution, u.

ii. Build fluxes based on the Lagrangian form.

Precisely, consider a system with a potential energy function G(u,∇u,x). Then the weak form on
an element Ωj is given by:

∫

Ωj

(

∑

k

∂G

∂ui,k
(φu,∇φu,x)

∂

∂xk
+

∂G

∂ui
(φu,∇φu,x)

)

(

∂uhi
∂t

− vhi

)

=

∫

∂Ωj

∑

k

nk
∂G

∂ui,k
(φu,∇φu,x)

(

v∗i − vhi

)

,

∫

Ωj

φv,i
∂vhi
∂t

+
∑

k

∂φv,i

∂xk

∂G

∂ui,k
(uh,∇uh,x) + φv,i

∂G

∂ui
(uh,∇uh,x)− φv,ifi(x, t) =

∫

∂Ωj

∑

k

nkφv,iw
∗

i,k,

where v∗i and w∗

i.k are appropriately chosen fluxes. Although the formulation may look complex,
its implementation is fairly straightforward, and for complex systems it uses significantly fewer
unknowns than LDG. In [4] we observe optimal convergence for both dissipative upwind fluxes and
energy-conserving alternating fluxes. We also prove optimal convergence in the energy norm for
simple cases.
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The method is naturally formulated for any system in Lagrangian form, and we have exper-
imented with it for various nonlinear model problems. These often develop singularities, and an
interesting open problem is to develop conditions on discretization schemes which guarantee con-
vergence to physically relevant weak solutions. We also note that the new formulation can be used
to derive Galerkin difference methods which can be applied on hybrid grids. These issues will be a
focus of our continued research into these methods.

4 Applications

Although our overall concentration is on the development of general-purpose algorithms for waves,
we are interested in applications to challenging problems. One example is the simulation of seismic
waves. This is particularly relevant for modeling earthquakes, but is also important for problems
related to imaging underground geology. For the former problem we are collaborating with Jacobo
Bielak of Carnegie Mellon University and Dan Givoli of the Technion. We have both Hermite and
DG elastic wave codes, and a Galerkin difference elastic code is planned, but we need to look at
their hybridization near geologic features in the earth’s interior. Developing this code and applying
it to basic benchmark problems will be a next step. We note that similar ideas can be used in the
context of nondestructive evaluation.

In collaboration with Daniel Appelö of the University of New Mexico and Tim Colonius of
Caltech we have developed a Hermite-based compressible Navier-Stokes solver. A major application,
primarily funded by the NSF but benefiting from the work done under this grant, is the direct
numerical simulation of jet noise at Reynolds numbers an order of magnitude higher than those
attained previously, to within one order of magnitude of the Reynolds numbers where most relevant
experiments are performed. The code is fully parallelized and we have carried out a number of
experiments with turbulent compressible flows to verify its accuracy. As we complete some of our
higher Reynolds number runs, we face the problem of extracting useful insights from the results.
Here we hope to leverage work in model reduction, control theory, and data mining to use our
simulations to develop better models of noise production.

Lastly we note that we expect HyPerComp to make extensive use of our radiation boundary
condition library to solve problems in electromagnetism and acoustics of direct interest to the DOD.
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